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Abstract Source structure modelling of VLBI global
observing system (VGOS) observations is one of the
main interests for Astrogeodesy, a project combining
the knowledge from geodesy, astrometry and radio as-
tronomy. We report our research on the calibration of a
VGOS dataset using astronomical data reduction soft-
ware. We investigate whether fringe fitting works for
VGOS data, identify potential problems in the data that
may hinder the amplitude and phase calibrations, and
find ways to improve the calibration process.
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1 Introduction

Astrogeodesy, funded by the Horizon Europe pro-
gramme, iS a new project that aims to help fulfill
the VGOS goals. These include 1 mm accuracy and
0.1 mm/year stability in station positions on a global
scale. These improvements are very important for
the global terrestrial reference frame and celestial
reference frame as well as astrophysics. To achieve
these accuracies, the effects of source structure on
VGOS datasets must be considered before generating
geodetic products.

Source structure has been ignored in geodetic Very
Long Baseline Interferometry (VLBI) observations,
and it is a limiting factor for achieving high-accuracy
source and station positions [7]. For example, the
systematic errors introduced by source structure
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have been recently reported to be at the level of 20
picoseconds, which is considered a major systematic
error in VGOS observations [1, 6]. VGOS observes
and detects radio signals from quasars, a type of Active
Galactic Nuclei (AGN), which at radio frequencies and
milliarcsecond (mas) scales often exhibit a relativistic
plasma jet launched in a certain direction originating
from regions near a supermassive black hole residing
in the center of the galaxy. Imaging at four different
bands spanning from 3.3 to 10.5 GHz confirms the
presence of jets in VGOS sources (e.g., 0016+731,
1803+784, 1418+546) as described by [7]. Note that
for the goal of 1 mm accuracy the “invisible” structure
of the AGNs at the sub-mas scales (i.e., smaller
than the beam size) has to be taken into account as
well. Correcting the effects of source structure in
VGOS observations requires first source structure
modelling, i.e., systematically calibrating and imaging
ultra-broadband VGOS observations. In this work,
the authors focus initially on developing a pipeline
to calibrate VGOS observations in an astronomical
calibration mode.

2 Observations and Analysis

We processed one IVS VGOS experiment, ses-
sion VR2201, observed on January 20-21, 2022.
The session involved nine participating antennas:
GGAOI2M (GS), HOBART12 (HB), KOKEE12M
(K2), MACGO12M (MG), ONSA13NE/ONSA13SW
(OE and OW), WESTFORD (WF), WETTZ13S (WS),
and RAEGYEB (YJ). It was scheduled using the
radio-source-centric approach to improve the imaging
capability of geodetic observations [5]. The session

132



Fringe Fitting of VGOS Data for Astrogeodesy

133

utilized a 512-MHz-wide bandwidth at each of the
four bands: 3 GHz (A-band), 5 GHz (B-band), 6 GHz
(C-band), and 10 GHz (D-band), in both vertical and
horizontal polarization. Each band is further divided
into eight selected channels of a 32-MHz bandwidth.

The raw data were correlated with a spectral
window of 0.25 MHz (resulting in 128 points at
each 32 MHz channel) and an integration time of
one second. The SWIN data provided by the IVS
data archive were transformed to circular polarization
using the software Polconvert [4]. Simultaneous
scans (more than one source observed simultaneously)
with a lesser number of antennas were then flagged,
retaining only the scans with the higher (or highest
if more than two sources were observed at the same
time) number of antennas. This selective approach was
prompted due to the data being grouped into subarrays
by the Astronomical Interactive Processing System
(AIPS), which resulted in many failed solutions in
fringe fitting and required several subarrays to be
processed separately. After flagging the subarray data,
several output FITS files were generated.

We calibrated the data using the AIPS software
based on the ATPS cookbook! [3]. A standard calibra-
tion of astronomical VLBI data for AGNSs includes am-
plitude and phase calibrations. Our current calibration
pipeline is schematically displayed in Figure 1. How-
ever, we currently omitted the amplitude calibration be-
cause we did not count on TSYS information for this
experiment. After loading the generated FITS files, we
inspected the visibilities at the four frequency bands for
various sources, scans, and baselines to identify out-
liers.

Overall, we found RFI in the amplitude visibilities
between 10.20 and 10.65 GHz in baselines with an-
tenna YJ; see Figure 2 as an example. The RFI in the
spectral windows between 3 and 5 at 10.48 GHz was
removed from all the scans. Furthermore, an extensive
flagging of phase cal tones in baseline OE-OW across
all scans and frequencies was conducted. In the first
stage of phase cal tone flagging, we removed visibil-
ities from the following spectral windows: 19-20, 39-
40, 59-60, 79-80, and 99-100, from frequencies of 3
GHz, 5.24 GHz, 6.36 GHz, and 10.20 GHz. Addition-
ally, we flagged spectral windows 31-32, 51-52, 71-
72, 91-92, and 111-112 at frequencies of 3.03 GHz,
3.19 GHz, 3.35 GHz, 5.27 GHz, 5.43 GHz, 5.59 GHz,

! http://www.aips.nrao.edu/cook.html
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Fig. 1 Flowchart of the current calibration pipeline of VGOS
data in ATIPS. This does not include amplitude calibration for
session VR2201, as no TSYS information is available.
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Fig. 2 Amplitude (lower panel) and phase (upper panel) visibilities of source ‘0059+581” in a one-minute scan observed at frequen-
cies from 3 to 10.6 GHz on baseline OE-YJ. The left and right plots are given for RR and LL circular polarizations, respectively.
No fringes were detected at frequencies from 10.2 to 10.6 GHz. The RFI seen in this frequency band originates at the RAEGYEB

antenna.
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Fig. 3 Results of global fringe fitting of source ‘0059+581” for a one-minute scan (same scan as Figure 2) from 3 to 10.6 GHz for
baseline OE-Y]J. The results are given for RR (left plot) and LL (right plot) polarization. The failure of solutions at frequencies 10.2
to 10.6 GHz is attributed to the low SNR that originated at RAEGYEB.

6.39 GHz, 6.55 GHz, 6.71 GHz, 10.23 GHz, and 10.39
GHz. We also removed spectral windows 43-44, 63-64,
83-84, 103-104, and 123-124 at 3.06 GHz, 5.30 GHz,
6.42 GHz, and 10.26 GHz. Furthermore, we excluded
spectral windows 27-28, 47-48, 67-68, 87-88, and 107-
108 at 3.29 GHz, 3.45 GHz, 5.53 GHz, 5.69 GHz, 6.65
GHz, 6.80 GHz, 10.49 GHz, and 10.65 GHz. Finally,
spectral windows 15-16, 35-36, 55-56, 75-76, 95-96,
and 115-116 were removed at 3.42 GHz, 5.27 GHz,
5.65 GHz, 6.77 GHz, and 10.62 GHz. The second stage
of flagging involved removing phase cal tones adjacent
to the values flagged in the first stage. Additionally,
spectral windows 126 to 127 were removed at the fol-
lowing frequencies: 3.03 GHz, 3.19 GHz, 3.35 GHz,
3.45 GHz, 5.27 GHz, 5.30 GHz, 5.43 GHz, 6.39 GHz,
6.65 GHz, 6.71 GHz, 6.77 GHz, and 6.80 GHz.

After the extensive and careful flagging of the phase
cal tones in antenna OE, we ran VLBATECR to cor-
rect the dispersive delay using JPL maps of total elec-
tron content. Next, we applied instrumental phase cor-
rections by executing the VLBAMPCL task. We used
the latest flagging table and selected the VGOS source
‘0059+581’ as the calibrator because it exhibited good
fringes (see Figure 2) and was observed by all partic-
ipating antennas except antenna HB. Following this,
we applied parallactic angle corrections by running the
VLBAPANG task.

Global fringe fitting was performed on all 176
sources to determine the group delays and phase
rates. At this stage, the sources were assumed to be
point-like. We used the latest calibration table gener-
ated, the last flagging table, a signal-to-noise (SNR)
threshold of 3, and GS as the reference antenna, and
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Fig. 4 Results of global fringe fitting of source ‘0059+581” for a one-minute scan (same scan as Figure 3) from 3 to 10.6 GHz for
both RR (left plot) and LL (right plot) polarization. The failure of solutions at frequencies 10.2 to 10.6 GHz is attributed to the low

signal-to-noise ratio (SNR) that originated at RAEGYEB.

we also included a list of multiple reference antennas.
The 32 channels were grouped into four bands to
fit multi-band group delay (at each band). FRING
solutions were then applied to the same sources using
task CLCAL. Examples of fringe fitting solutions are
shown in Figure 3 for baseline OE-YJ and in Figure 4
for other baselines. No fringe solutions were found in
band D for antenna YJ. Finally, bandpass calibration
was conducted by running task BPASS, using ten
selected sources as calibrators and applying Gaussian
spectral smoothing after the calibration. An example
of bandpass calibration for antenna WF is displayed in
Figure 5.

3 Discussion

We have shown that the global fringe fitting works well
for VGOS observations, although it does not necessar-
ily work for all baselines and scans, despite the flag-
ging of bad visibilities. In radio astronomy, a conser-
vative value of a small percentage (< 10%) of fringe-
fitting failed solutions is often acceptable. We are in-
vestigating the causes of producing failed fringe solu-
tions, which were 13% of the total. The slightly higher
percentage of failed solutions we report here might be
related to the choice of the reference antenna and to the
low SNR between 10.2 GHz and 10.6 GHz at antenna
YJ. Additionally, we note that a good bandpass calibra-
tion is not obtained without flagging phase cal tones on
one of the Onsala antennas.
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Fig. 5 Bandpass shape from 3 to 10.6 GHz for antenna WF with the R polarization. Top: phase (in units of degrees). Bottom:

amplitude.

Because Astrogeodesy aims at modelling the
source structure in VGOS observations routinely,
it is important that similarly to astronomical VLBI
observations, VGOS observes several sources with
long scan lengths (of a few minutes) as calibrators
needed for instrumental phases (aligning the phases
across various channels) and bandpass calibrations.
Additionally, if future VGOS observations provide
TSYS information, this will enable a standard calibra-
tion of VGOS datasets. The value of this is that both
phase and amplitude calibrations are fundamental for
obtaining a good image dynamic range to resolve the
source structure and source flux density estimations,
which are also useful for AGN jet research. Further-
more, core-shift measurements in VGOS sources
will also be necessary for the future, given that the
core-shift time variability can affect the high-accuracy
astrometric VLBI measurements of radio sources as
discussed by, e.g., [2].
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