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Abstract 
The VLBI2010 Monte Carlo simulations as described by Pany et al. 2008, Wrenik et al. 2007 
and MacMillan 2007, yield the big advantage of exactly knowing the input to the simulators 
which is the sum of VLBI’s main stochastic error sources, those being tropospheric wet delay, 
station clock and thermal noise. Assuming the simulation of group delay observables to be 
realistic, it is thus possible to test various analysis strategies and different parameterizations 
on their ability of properly modelling these stochastic processes and thus separating the 
influences of troposphere and clock. The VLBI2010 PPP Simulator (Pany et al. 2008) can 
handle single stations which makes it a powerful tool for investigations like this. It is possible 
to test many different strategies in fairly short time, and the simplicity of this approach helps 
gaining insight in how the choice of parameters like constraints or the length of time segments 
impact on station position repeatability. 
In this memo we present an investigation on the parameterization of zenith wet delay and 
station clock, using both the classical least squares (Gauss-Markov model) and the Kalman 
filter version of the PPP Simulator. 
 
1. Introduction 
 
For VLBI2010 PPP simulations, fictitious group delay observables delaygroup are generated as 
given by equation (1): 
 
 wnclkelmfzwddelay wgroup ++⋅= )( ,      (1) 
 
where zwd denotes zenith wet delay, mfw the wet mapping function (which is assumed to be 
free of error), el elevation angle, clk stochastic variations of station clock and wn white noise. 
The group delay observables are generated for fictitious VLBI2010 test schedules. The 
generation of equivalent zenith wet delays follows the strategy proposed by Nilsson et al. 
(2007). Stochastic fluctuations of station clock are simulated as sum of a random walk and an 
integrated random walk with power spectral densities corresponding to a specific clock Allan 
standard deviation (ASD) as proposed by Herring et al. (1990). More details and the source 
code for zenith wet delay and clock simulation are provided in Böhm et al. (2007). The white 
noise in (1) is added to account for the thermal noise of the receiving system. 
The group delay observables are generated for 25 identical 24h-sessions, i.e. only the random 
numbers used in the simulation procedure are changed. All 25 realizations are evaluated with 
the PPP Simulator and thus a sample of output parameters is gained that can be analyzed 
statistically. The most important statistical value considered is the rms error of 3D station 
position of each station. This value can be directly compared to results from OCCAM and 
Calc/Solve simulations. Other statistical values of interest might be the mean rms errors of 
zenith wet delay and clock post fit residuals. 
 
All investigations presented here were carried out for the VLBI2010 16 station test schedule 
st16uni_60_12_230X_0_0.skd if not otherwise stated. This schedule was generated by 
Antony Searle from NRCan (Natural Resources Canada) and is achieving uniform sky 
coverage over 12 minute intervals, while switching every 60 seconds. For more details about 
this type of schedules refer to Petrachenko et al. (2008). The turbulent equivalent zenith wet 
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delays were generated with the Vienna turbulence simulator (Böhm et al. 2007) using the 
turbulence parameters provided by Tobias Nilsson from Onsala Space Observatory, Sweden. 
The values for the turbulence parameters are given in the appendix. The stochastic 
fluctuations of station clock were simulated assuming a clock with an ASD of 1e-14 @ 50 
min. A white noise of 4/sqrt(2) ps per station was added what corresponds to the white noise 
of 4 ps per baseline added for OCCAM and Calc/Solve simulations. 
 
2. PPP with classical least squares 
 
The standard model for the estimation of zenith wet delays are piecewise linear functions, 
clock is usually modeled as second order polynomial with superimposed piecewise linear 
functions, and the components of station position are treated as deterministic parameters and 
are determined once per session. 
In the following sections we will present some tests on zenith wet delay parametrization, the 
impact of the choice of estimation intervals on position repeatability, the impact of the choice 
of constraints, and a test on elevation dependent weighting of observations. 
 
2.1 Rapid Gradients 
 
For troposphere delay estimation in real data analysis, McCarthy and Petit (IERS Conventions 
2003, 2004) recommend to apply a gradient model, which is given for the wet part of the 
delay by 
 
 [ ])sin()cos()()( azGazGelmfLelmfL ENw

z
www ⋅+⋅⋅+Δ⋅=Δ .    (2) 

 
In (2), wLΔ  is the total wet delay, wmf  the wet mapping function, el the elevation angle, z

wLΔ  
the zenith wet delay, az azimuth, and GN and GE denote north and east gradient respectively. 
Gradients are used to model azimuthal asymmetries in tropospheric wet delays. In real data 
analysis, gradients are used to model phenomena on long time scales and are thus estimated 
for time intervals of several hours. Gradient rates are constrained to zero using pretty tight 
constraints of e.g. 2 mm/24 h. Such phenomena will not exist in the simulated time series of 
turbulent equivalent zenith wet delays since for VLBI2010 studies only stochastic fluctuations 
of the wet refractive index are taken into account. However, since turbulence theory provides 
not only temporal but also spatial correlations of observations, which are used for the 
generation of turbulent time series, there will be azimuthal asymetries in the simulated time 
series which cannot be modeled properly with a simple piecewise linear function model. The 
simulation studies have shown that that the gradient model as given by (2) can partly model 
these fast asymmetric fluctuations when estimating the gradients for short time segments of a 
couple of minutes. Figure 1 shows rms position error for a run with the simple piecewise 
linear functions model (i.e. without estimating gradients), a run with gradients estimated over 
12 h time segments (constraints: 2 mm/h), and a run with gradients estimated over 6 min time 
segments (constraints: 2 mm/h). The same time series of turbulent equivalent zenith wet 
delays, station clock and white noise were used for the three runs to make sure that 
differences are only due to the application of the gradient model and to the choice of the time 
segment for which the gradients are estimated. In Figure 1, the stations are ordered from 
North to South. The improvement in position repeatability when using rapid gradients is 
obvious, especially for stations with rather wet tropospheres, i.e. stations with low latitudes 
(the equator is located between stations KW and FT). 
 



 3

Figure 1: 3D rms error for a run 
without estimation of gradients 
(blue), gradients estimated for 12 
hour time segments (green), and 
gradients estimated for 6 min time 
segments (red) (constraints for 
gradients: 2 mm/h in both cases). 
Zwd: 6 min, 48 mm/h; clk: 1 h, 54 
mm/h; schedule:  
st16uni_60_12_230X_0_0.skd; 
ASD 1e-14 @ 50 min; wn = 
4/sqrt(2) ps. The order of stations is 
from North to South with the 
equator being located between 
stations KW and FT. The error bars 
show 1 sigma of the scatter, i.e. 
rms/√(2·25). 

 
Figure 2 shows the improvement in percent that was obtained by applying 12 h gradients (left) 
and 6 min gradients (right). 
 

12 h gradients 6 min gradients 

Figure 2: Improvement in 3D rms error in % when applying gradients (left plot: 12 h gradients, right 
plot: 6 min gradients). 
 
 
2.2 Varying the length of estimation intervals 
 
To assess the impact of the length of estimation intervals of zenith wet delay, gradients, and 
clock, the length of estimation interval for one of these parameters was varied, while keeping 
the other values constant. If not being varied, the estimation intervals where chosen as 
follows: zwd – 6 min, constrained with 48 mm/h; grd – 6 min, constrained with 2 mm/h; clk – 
1 h, constrained with 54 mm/h. When varying the length of estimation intervals, the 
constraints of gradient rates were kept fixed, while the constraints of zenith wet delay and 
clock rates were adapted as described in Section 2.3. 
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2.2.1 Varying the length of estimation intervals for the zenith wet delay 
 
Figure 3 shows 3D rms error (upper plots), mean rms of zenith wet delay post fit residuals 
(middle plots), and mean rms of clock post fit residuals (lower plots) for simulations where 
different zenith wet delay estimation intervals were used. It can be seen that the impact on 
mean rms of clock residuals is small. Rms of zenith wet delay residuals are getting worse for 
dry stations when using shorter estimation intervals, but there is a significant improvement for 
wet stations. The improvement in 3D rms is not that clear, but reducing the estimation interval 
of zenith wet delays from 1 h to 6 min, yields an improvement in 3D rms for all but one 
stations (see Figure 6, upper left, Section 2.2.4). 
 

Figure 3: 3D rms error (top), mean rms of zwd post fit residuals (middle) and mean rms of clk post fit 
residuals (bottom) for different lengths of estimation intervals for zwd. Grd: 6 min, 2 mm/h, clk: 1 h, 54 
mm/h; schedule: st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 min; wn = 4/sqrt(2) ps. The order of 
stations is from North to South with the equator being located between stations KW and FT. The error 
bars show 1 sigma of the scatter, i.e. rms/√(2·25). 
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2.2.2 Varying the length of estimation intervals for the gradients 
 
Figure 4 shows 3D rms error (upper plots), mean rms of zenith wet delay post fit residuals 
(middle plots), and mean rms of clock post fit residuals (lower plots) for simulations where 
different gradient estimation intervals were used. The conclusions that can be drawn from the 
results are the same as for varying the zenith wet delay estimation intervals. The improvement 
in all three parameters, 3D rms error and mean rms of zentih wet delay and clock post fit 
residuals can be deduced from the upper right plot in Figure 6 (Section 2.2.4). 
 

Figure 4: 3D rms error (top), mean rms of zwd post fit residuals (middle) and mean rms of clk post fit 
residuals (bottom) for different lengths of estimation intervals for grd. Zwd: 6 min, 48 mm/h, clk: 1 h, 54 
mm/h; schedule: st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 min; wn = 4/sqrt(2) ps. The order of 
stations is from North to South with the equator being located between stations KW and FT. The error 
bars show 1 sigma of the scatter, i.e. rms/√(2·25). 
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2.2.3 Varying the length of estimation intervals for the clock 
 
Figure 5 shows 3D rms error (upper plots), mean rms of zenith wet delay post fit residuals 
(middle plots), and mean rms of clock post fit residuals (lower plots) for simulations where 
different clock estimation intervals were used. In this case, there is a slight improvement for 
dry stations, when reducing the length of clock estimation intervals but a degradation for wet 
stations can be observed. The improvement, or degradation respectively, can be deduced from 
Figure 6 lower left (Section 2.2.4). 
 

Figure 5: 3D rms error (top), mean rms of zwd post fit residuals (middle) and mean rms of clk post fit 
residuals (bottom) for different lengths of estimation intervals for clk. Zwd: 6 min, 48 mm/h, grd: 6 min, 
2 mm/h; schedule: st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 min; wn = 4/sqrt(2) ps. The order of 
stations is from North to South with the equator being located between stations KW and FT. The error 
bars show 1 sigma of the scatter, i.e. rms/√(2·25). 
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2.2.4 What improvement can be expected using rapid estimates 
 
As a summary of Sections 2.2.1-2.2.3, Figure 6 presents the improvement (or degradation 
respectively) in 3D rms error (blue), mean rms of zenith wet delay post fit residuals (green), 
and mean rms of clock post fit residuals that was obtained when reducing the length of 
estimation interval from 1h to 6 min for one of the parameters to be estimated (zenith wet 
delay, gradients, clock) while keeping the length of time segments for the other parameters 
fixed to the values given in the introduction to Section 2.2. 
The impact of shorter estimation intervals for zenith wet delays (upper left plot) and gradients 
(upper right plot), is very similar. Shorter zenith wet delay estimation intervals have slightly 
more impact on mean rms of zenith wet delay residuals than have shorter gradient time 
segments. The impact on mean rms of clock residuals and 3D rms errors is almost the same. 
The impact of shorter clock estimation intervals looks different. The effect on 3D rms error of 
wet stations is significantly smaller than is for shorter zenith wet delay or gradient estimation 
intervals. The impact on zenith wet delay and clock residuals exhibits a strong dependence on 
the variability of the troposphere but is exactly opposite to the impact of zenith wet delay and 
gradient estimation intervals: 6 min clocks improve rms errors of zenith wet delay and clocks 
for dry stations, but significantly degrade it for wet stations. 
 
Impact of reducing the zwd estimation interval Impact of reducing the grd estimation interval 

Impact of reducing the clk estimation interval  
 
 
 
Figure 6: Improvement in % when reducing the 
estimation interval from 1 h to 6 min for one 
parameter while keeping the estimation intervals of 
the other parameters fixed to the values given in 
the introduction to Section 2.2. The order of 
stations is from North to South with the equator 
being located between stations KW and FT. 
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2.3 Impact of constraints for stochastic parameters on position estimates 
 
The rates of the piecewise linear functions are constrained to zero by introducing pseudo 
observations. Some tests were carried out to investigate, how the choice of these constraints 
impacts on position repeatability. 
When using 1 hour segments for zenith wet delay estimation (a standard value in real data 
analysis), a standard value for the constraints is 15 mm/h. This corresponds to the variance 
rate of 0.7 ps²/s for the Kalman filter used for the OCCAM VLBI2010 simulation studies 
(Wresnik et al., 2007). When using shorter estimation intervals, e.g. 6 min, the constraints 
should be adapted as follows: 
 
0.7        ps²/s  | · 60 · 6 
252       ps²/6 min | √ 
15.875  ps/6 min |  · 60 / 6 
158.75  ps/1 h  | · 1e-12  · c · 1e3 (c is the speed of light in m/s) 
~ 48 mm/h 
 
In Figure 7, two analyses with different constraints for zenith wet delay rates are compared. 
Zenith wet delays and gradients were estimated using 6 min segments. For the clock, 1 h 
segments were used. Constraints were 2 mm/h for gradient rates, 54 mm/h for clock rates, and 
48 mm/h (blue) and 15 mm/h (red) respectively for zenith wet delay rates. Figure 7 shows 
mean rms of zenith wet delay post fit residuals (upper left), mean rms of clock post fit 
residuals (upper right), and 3D rms error (lower left). The impact on mean rms of clock 
residuals is insignificantly small. Mean rms of zenith wet delay residuals show an interesting 
behavior: at stations with a rather dry troposphere, i.e. high latitude stations, the rms are 
slightly better when using constraints of 15 mm/h, at stations with a rather wet troposphere, 
i.e. low latitude stations, the rms are slightly better when using constraints of 48 mm/h. (The 
stations are ordered from North to South with the equator being located between stations KW 
and FT). When looking at the 3D rms errors, it is difficult to say, which constraints are better. 
However, the differences due to varying the zenith wet delay constraints are small. 
 
The situation is similar, when looking at the gradient constraints. For the OCCAM and PPP 
Kalman Filter simulations, a standard variance rate of 0.5 ps²/s is used for the gradient 
estimation. This is equal to constraints of roughly 40 mm/h for the gradient rates. Another 
gradient variance rate tested for the PPP Kalman Filter that gave reasonably good results for 
this schedule (compare Section 3.2), is 0.015 ps²/s which is equal to about 7 mm/h. For real 
data analysis, a standard value for the gradient constraints is 2 mm/24 h, which is equal to 
about 0.08 mm/h, and the standard value normally used for the PPP classical least squares 
simulations is 2 mm/h. These four values for the gradient rate constraints were tested. The 
results are shown in Figure 8. The lower left plot presents 3D rms errors, the upper left plot 
mean rms errors of zenith wet delay post fit residuals and the upper right plot mean rms errors 
of clock post fit residuals. Looking at the results it can be stated that i) the impact of gradient 
rate constraints on mean rms of clock post fit residuals is insignificant, ii) the impact on mean 
rms of zenith wet delay post fit residuals is very small for dry stations, and a little larger, 
though still small, for wet stations (for wet stations 40 mm/h yield best results), and iii) 
looking at 3D rms error it is not possible to tell which constraints yield best results. 
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Figure 7: Mean rms of zwd post fit residuals 
(upper left), mean rms of clk post fit residual 
(upper right), and 3D rms error (lower left) for two 
different zwd rate constraints (blue: 48 mm/h, red: 
15 mm/h).  Zwd: 6 min, 15 and 48 mm/h; grd: 6 
min, 2 mm/h; clk: 1 h, 54 mm/h. Elevation 
dependent weighting as described in Section 2.4 
applied. Schedule: 
st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 
min; wn = 4/sqrt(2) ps. The order of stations is 
from North to South. The error bars show 1 sigma 
of the scatter, i.e. rms/√(2·25). 

 

Figure 8: Mean rms of zwd post fit residuals 
(upper left), mean rms of clk post fit residual 
(upper right), and 3D rms error (lower left) for four 
different grd rate constraints (dark blue: 40 mm/h, 
light blue: 7 mm/h, yellow: 2 mm/h, red: 0.08 
mm/h).  Zwd: 6 min, 48 mm/h; grd: 6 min, variable 
constraints; clk: 1 h, 54 mm/h. Elevation 
dependent weighting as described in Section 2.4 
applied. Schedule: 
st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 
min; wn = 4/sqrt(2) ps. The order of stations is 
from North to South. The error bars show 1 sigma 
of the scatter, i.e. rms/√(2·25). 
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A typical value for clock rate constraints in real data analysis is 54 mm/h when using 1 hour 
time segments. This parameterization is usually used in the VLBI2010 PPP simulations. 
Constraints could also be determined from the ASD of 1e-14 @ 50 min, which is applied for 
the simulation of stochastic clock variations: 
 
1e-14   | ² 
1e-18   | · 50 · 60 
3e-25      s²/s  | · 3600 
1.08e-21 s²/h  | √ 
3.29e-11 s/h  | · 1e-12  · c · 1e3 (c is the speed of light in m/s) 
~ 10 mm/h 
 
Two runs were performed for which the clock was estimated using 1 hour segments and 
constraints of 54 mm/h and 10 mm/h respectively were applied. (The clock variance rate used 
for the PPP Kalman Filter (1 ps²/s) is about 18 mm/h and is thus within the tested range of 
values.) The results are presented in Figure 9 which shows mean rms of zenith wet delay post 
fit residuals (upper left), mean rms of clock post fit residuals (upper right), and 3D rms errors 
(lower left). Comparing the solutions it can be stated that the impact on all parameters is 
insignificant in the tested range of values. 
 
In conclusion of this Section it can be said that the impact of constraints for all three 
parameters, zenith wet delay rates, gradient rates, and clock rates, is very small within the 
tested range of values. Constraints of 48 mm/h for 6 min zenith wet delays, 2 mm/h for 6 min 
gradient rates, and 54 mm/h for 1 h clocks, are a reasonable choice for the simulation studies. 
 

 
Figure 9: Mean rms of zwd post fit residuals 
(upper left), mean rms of clk post fit residual 
(upper right), and 3D rms error (lower left) for two 
different clk rate constraints (blue: 54 mm/h, red: 
10 mm/h).  Zwd: 6 min, 48 mm/h; grd: 6 min, 2 
mm/h; clk: 1 h, 54 mm/h and 10 mm/h 
respectively. Elevation dependent weighting as 
described in Section 2.4 was applied. Schedule: 
st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 
min; wn = 4/sqrt(2) ps. The order of stations is 
from North to South. The error bars show 1 sigma 
of the scatter, i.e. rms/√(2·25). 
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2.4 Elevation dependent weighting of observations 
 
Since the path length a signal has to travel through the atmosphere is increasing with 
decreasing elevation angle, there will be higher variability of wet delays at lower elevations. 
Simulation studies have revealed that observations at low elevations quite often show peaks in 
the zenith wet delay time series that may act like “outliers” tending to bias the piecewise 
linear functions. A strategy might thus be to weight observations according to their elevation 
angle. J. Gipson (Gipson, 2007) proposed to add an atmospheric uncertainty to the 
observation uncertainty: 
 
 222 )()( elmfael obsw ⋅+= σσ ,        (3) 
 
where 2

wσ  is the weighted observation noise, el the elevation angle, 2
obsσ  the unweighted 

observation noise (i.e. 42/sqrt(2)2 = 8 ps2), mf the mapping function, and a a constant 
atmospheric noise. Gipson achieved best results using an a of  ~10 ps. This value was also 
applied to the PPP simulations. Figure 10 shows a comparison of 3D rms error for a run 
without the application of elevation dependent weighting (blue) and a run with the application 
of elevation dependent weighting (red). There is a clear improvement in 3D rms error when 
applying elevation dependent weighting. 
 

 

 
Figure 10: 3D rms error for a run 
without application of elevation 
dependent weighting (blue) and a 
run with application of elevation 
dependent weighting (red). Zwd: 12 
min, 34 mm/h; grd: 12 min, 2 
mm/h; clk: 1 h, 54 mm/h; schedule:  
st16uni_60_12_230X_0_0.skd; 
ASD 1e-14 @ 50 min; wn = 
4/sqrt(2) ps; atmospheric noise: 10 
ps. The order of stations is from 
North to South. The error bars show 
1 sigma of the scatter, i.e. 
rms/√(2·25). 

 

 

 
 
 
 
 
 
Figure 11: Improvement in 3D rms 
error in % when applying elevation 
dependent weighting. 
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2.5 Spherical harmonics – an outlook 
 
Another approach to zenith wet delay modeling might be to introduce spherical harmonic 
functions of higher degree and order. Böhm and Schuh (2001) have applied a spherical 
harmonics model to real data analysis. The approached they used is given by 
 
 ( ) ( ) ( ) ( ) ( )azzdSHelelmfLelmfazelL nm

z
ww ,cot, ⋅⋅+⋅=Δ      (4) 

 
with wLΔ  denoting the total wet delay, el elevation angle, az azimuth, mf the mapping 
function, z

wL  the zenith wet delay, SHnm spherical harmonic functions of degree n and order m, 
and zd zenith distance. Böhm and Schuh tested spherical harmonics of degree n = 1, 2, 3 and 
order m = 0, 1 as well as different combinations of these spherical harmonic functions. They 
found a small improvement in terms of height repeatability when using this model instead of 
the standard gradient model given by (2). However, they estimated the spherical harmonics 
for 12 h and 6 h time intervals. VLBI2010 analyses, having so many more observations 
available, might benefit from rapid spherical harmonic estimates of higher degrees and orders. 
One advantage of spherical harmonic functions might be that they cannot only model 
asymmetries in azimuthal direction, but that they also yield the possibility of modelling 
asymmetries in vertical direction. Gradients as used in (2) are similar to spherical harmonic 
functions of degree and order one: 
 
 gradients: )sin()cos( azGazG EN +        (5a) 
 SH11:  ( ) ( ))(sin()sin()cos( 1111 izdazbaza −⋅+  .     (5b) 
 
In (5b), a11 and b11 denote the coefficients of the spherical harmonics functions. The 
differences of the two approaches are shown in Figure 12 upper left and Figure 12 middle left. 
In contrast to the gradients, the spherical harmonic functions model is additionally dependent 
on elevation angle. While the degree n of the spherical harmonic functions defines the 
resolution of the model in elevation, the order m defines the resolution in azimuth. 
 
First tests with rapid low order spherical harmonic functions have not revealed a significant 
improvement. However, spherical harmonic functions of higher degrees and orders might 
yield the possibility of a better modeling of spatial structures in the troposphere without 
increasing the number of parameters to be estimated, since only the coefficients anm and bnm 
have to be determined. Another possibility might be to use combinations of spherical 
harmonic functions or spherical harmonic expansions. Although this would mean an increase 
in the number of parameters to be estimated, the high observation density of VLBI2010 
schedules might make this possible too. It is planned to carry out more detailed investigations 
with this respect. 
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Gradient model: )sin(1)cos(1 azaz ⋅+⋅  ( )( ) ( ))sin(1)cos(13cos5)cos(

2
1 2

30 azazzdzdSH ⋅+⋅⋅−⋅=

  
( ))sin(1)cos(1)sin(11 azazzdSH ⋅+⋅⋅−=  ( )⋅+−⋅−= 1)(cos14)(cos21)sin(

8
15 24

51 zdzdzdSH  

             ( ))sin(1)cos(1 azaz ⋅+⋅  

  
( )⋅+−⋅= 1)(cos18)(cos33)(sin

8
105 242

62 zdzdzdSH  

           ( ))2sin(1)2cos(1 azaz ⋅⋅+⋅⋅  ( ))3sin(1)3cos(1)(sin15 3
33 azazzdSH ⋅⋅+⋅⋅⋅−=  

Figure 12: Gradient model and spherical harmonics model plotted for a certain time instant with gradients 
and coefficients being 1. The degree n defines the resolution in elevation, the order m the resolution in 
azimuth. Spherical harmonic functions of higher degrees and orders might make it possible to model the 
spatial structure of the atmosphere for short time periods of several models in more detail than is possible 
with the classical gradients model.  
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3. PPP with Kalman filter 
 
In the Kalman filter version of the PPP Simulator, zenith wet delay is treated as stochastic 
process and modelled as random walk. Zenith wet delay can be superimposed with gradients, 
which can be treated either as deterministic or as stochastic parameters (Section 3.1). Station 
clock is also treated as stochastic process and is composed of a deterministic rate 
superimposed with a random walk offset. Station coordinates are treated as deterministic 
parameters and are estimated once per session. 
The Kalman filter has to be told, how much the stochastic parameters are varying. This is 
done by giving the variance rates of the stochastic processes. An investigation on the impact 
of the variance rates of zenith wet delays and gradients was carried out. Results are presented 
in Section 3.2. 
Another strategy to be pursued is to apply elevation dependent weighting of observations 
within the filtering process. This topic is addressed in Section 3.3. 
 
3.1 Gradients 
 
In the OCCAM Kalman Filter used for real data analysis, it is possible to apply gradients, 
which are treated as deterministic parameters. As stated in Section 2.1, when speaking about 
gradients in the context of VLBI2010 simulations, we mean fast azimuthally asymmetric 
fluctuations of wet refractive index. Since it is likely that deterministic gradients will not 
suffice to model these short periodic asymmetries, we treated the gradients as random walk 
processes and compared it to solutions without the application of gradients and the application 
of deterministic gradients. Results can be seen in Figure 13. The same time series of turbulent 
equivalent zenith wet delay, station clock and white noise were used for the three runs, 
differences thus being only due to applying deterministic or random walk gradients. The order 
of stations in this plot is from North to South. It can be deduced that dry stations (stations in 
high latitudes) do not benefit from the application of random walk gradients while there is an 
improvement for rather wet stations (stations with low latitudes). The stations are ordered 
from North to South, the equator is located between stations KW and FT. 
 

Figure 13: 3D rms error for a run 
without estimation of gradients 
(blue), with estimation of 
deterministic gradients  (green), and 
with estimation of random walk 
gradients with a variance rate of 0.5 
ps²/s (red). Zwd: random walk, 0.7 
ps²/s; clk: deterministic rate plus 
random walk offset, 1 ps²/s; 
schedule:  
st16uni_60_12_230X_0_0.skd; 
ASD 1e-14 @ 50 min; wn = 
4/sqrt(2) ps. The order of stations is 
from North to South. The error bars 
show 1 sigma of the scatter, i.e. 
rms/√(2·25). 
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Figure 14: Improvement in 3D rms error in % when applying deterministic (left) or random walk 
(right) gradients. The order of stations is from North to Sout with the equator being located between 
stations KW and FT. 
 
Figure 14 presents the improvement in 3D rms error in % that was obtained applying 
deterministic (left plot) or random walk (right plot) gradients. As can be seen, there is a 
relativley small improvement for almost all stations when applying deterministic gradients. 
The effect of applying random walk gradients is much more significant. For dry stations, a 
significant degradation of 3D rms error can be observed, while for almost all wet stations 3D 
rms error was improved. 
 
3.2 Variance rates 
 
Variance rates determine how much the stochastic parameters of the model are allowed to 
vary and their choice is thus an important factor in the estimation of stochastic parameters 
such as zenith wet delay and station clock. For the VLBI2010 simulations with OCCAM 
Kalman Filter, an investigation has been carried out with different combinations of zenith wet 
delay and gradient variance rates in order to determine most suitable values to be applied for 
all further simulation studies. This investigation was carried out for a different VLBI2010 test 
schedule, stat16_12_3p5D0ln.skd, produced by J. Gipson from Goddard Space Flight Center 
(GSFC, Maryland, USA) (Behrend et al., 2007). This type of schedules was generated with 
the SKED software (Vandenberg, 1999), using the so called “burst mode” (i.e. the data are 
first buffered and then written to disk, what reduces the on-source time), a new list of radio 
sources (consisting of 200 of the 230 sources of the list of Leonid Petrov (Petrov, 2007)), and 
a new scheduling strategy. The best values for the variance rates were found to be 0.7 ps²/s for 
zenith wet delay and 0.5 ps²/s for gradients (Wresnik et al., 2007). This investigation was 
carried out with the same combinations of variance rates for the same schedule and in addition 
for schedule st16uni_60_12_230X_0_0.skd using the PPP Kalman Filter. The time series of 
turbulent equivalent zenith wet delays for schedule stat16_12_3p5D0ln.skd and were 
generated using a former set of turbulence parameters. These time series were provided by T. 
Nilsson from Onsala Space Observatory, Sweden. Results for this investigations are plotted in 
Figure 15. From these results it can be said that the impact of zenith wet delay and gradient 
variance rates is very small for most of the stations except for a few stations with rather wet, 
i.e. highly variable, tropospheres. The choice of variance rates of 0.7 ps²/s for zenith wet 
delays, and of 0.5 ps²/s for gradients, is a reasonable choice for both schedules tested, 
although the results for schedule st16uni_60_12_230X_0_0.skd might suggest that variance 
rates of 0.7 and 0.015 ps²/s might eventually be a better choice for this specific schedule. 
 
Looking at these results, it is to suppose that the choice of variance rates might be dependent 
on i) the variability of the troposphere above a station, and ii) the observation density. Thus, 
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another investigation was carried for which only one station was analyzed. Time epoch, 
azimuth, and elevation of station Wettzell (WZ) from two schedules, 
st16uni_60_12_230X_0_0.skd and st16uni_30_6_230X_0_0.skd, were used to generate 250 
24 h sessions for different combinations of turbulence parameters. The latter schedule 
achieves uniform sky coverage for 6 minute intervals, while switching every 30 seconds (see 
Petrachenko et al., 2008) for details. The schedule with a switching rate of 60 s has about 
69700 observations per session, the schedule with a switching rate of 30 s about 139560. 
 

stat16_12_3p5D0ln.skd – Onsala turbulence 

st16uni_60_12_230X_0_0.skd – Vienna turbulence 

Figure 15: 3D rms error for different combinations of zwd and grd variance rates for schedule 
stat16_12_3p5D0ln.skd (upper plots) and st16uni_60_12_230X_0_0.skd (lower plots). Variance rate for 
clk: 1 ps²/s. ASD 1e-14 @ 50 min; wn = 4/√2 ps. The order of stations is from North to South. The error 
bars show 1 sigma of the scatter, i.e. rms/√(2·25). 
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st16uni_60_12_230X_0_0.skd st16uni_30_6_230X_0_0.skd 

Figure 16: 3D rms error versus effective height H of wet troposphere for station Wettzell for two 
different schedules. The curves show results for different refractive index structure constants Cn, and two 
different gradient variance rates (bold lines: 0.5 ps²/s, thin lines: 0.01 ps²/s). Variance rate of zwd: 0.7 
ps²/s, variance rate of clock: 1 ps²/s. ASD 1e-14 @ 50 min; wn = 4/√2 ps. 
 
Results are shown in Figure 16 (on the left for the schedule with a switching rate of 60 s, and 
on the right for the schedule with a switching rate of 30 seconds). The plots show 3D rms 
error versus effective height H of wet troposphere for different refractive index structure 
constants Cn and a wind of 7 m/s blowing towards North-East. The solid bold lines show 
results where a variance rate of 0.5 ps²/s war used for the gradients, the dashed thin lines show 
results where a variance rate of 0.01 ps²/s was used for the gradient estimation. It can be 
stated that i) for lower Cn and H values, the smaller variance rates yield better results, while 
for higher Cn and H values, the larger variance rates yield better results, and ii) for the 
schedule with the higher observation density (i.e. the one with a switching rate of 30 s), the 
larger variance rates yield better results already for lower Cn and H values compared to the 
schedule with less observation density. This shows that the choice of variance rates is indeed 
dependent on the prevailing atmospheric conditions at a station, as well as on the observation 
density. However, in the range of turbulence parameters that are used for the VLBI2010 
simulations (Cn values are in the range of 0.35e-7 to 3.09e-7 m-1/3, H values in the range of 
1322 to 2569 m), the differences in 3D rms error due to the choice of variance rates for the 
gradients are small. 
 
3.3 Elevation dependent weighting 
 
For the same reasons explained in Section 2.4, elevation dependent weighting was applied to 
the Kalman filter solution. The weighting was performed using Equation (3) (Section 2.4). 
Figure 17 shows 3D rms error for a run without elevation dependent weighting (blue) and a 
run with elevation dependent weighting (red). It can be seen that elevation dependent 
weighting improves 3D rms error for all stations. It should be mentioned that with the 
OCCAM Kalman Filter no such improvement could be observed. However, the stochastic 
model of the OCCAM Kalman Filter is more sophisticated and performs a downweighting as 
soon as the difference of prediction and measurement in the filter process is too large. Since 
this will be the case especially for observations at low elevations, this might be an explanation 
for the fact that elevation dependent weighting does not improve results for the OCCAM 
Kalman Filter. 
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Figure 17: 3D rms error for a run 
without elevation dependent 
weighting (blue), and a run with 
elevation dependent weighting 
applied (red). Zwd: random walk, 
0.7 ps²/s; grd: random walk, 0.5 
ps²/s; clk: deterministic rate plus 
random walk offset, 1 ps²/s; 
atmospheric noise applied for 
elevation dependent weighting: 10 
ps; schedule:  
st16uni_60_12_230X_0_0.skd; 
ASD 1e-14 @ 50 min; wn = 
4/sqrt(2) ps. The order of stations is 
from North to South. The error bars 
show 1 sigma of the scatter, i.e. 
rms/√(2·25). 

 
 
 
 
 
 
 
Figure 18: improvement of 3D rms 
error when applying elevation 
dependent weighting in %. 

 
 
4. Limitations 
 
The PPP Simulator, mainly due to its simplicity, has proven to be a powerful tool for 
VLBI2010 simulation studies. However, it has to be kept in mind that it performs a PPP 
solution and no network solution as the OCCAM and Calc/Solve simulators do. Although 
comparisons of PPP Kalman Filter results to OCCAM Kalman Filter results have shown a 
good agreement, the PPP results only give an indication of what strategy might yield an 
improvement. What is good for PPP might as well not yield any significant improvement for 
network solutions. Furthermore, the stochastic model of the PPP Simulator is not as 
sophisticated as are the stochastic models of OCCAM and Calc/Solve. 
 
There is some scatter in 3D rms error which is mainly reflecting the variability of the 
troposphere. Theoretically, the biases of Up, North and East component (i.e. the mean over 
the 25 residuals for each component) should be zero. In practice however, since only 25 
repetitions are performed, this will not be the case. Figure 19 shows height biases for all 16 
stations. The plot shows results of a run with the classical least squares method (blue - zwd: 6 
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min, 48 mm/h; grd: 6 min, 2mm/h; clk: 1 h, 54 mm/h), and of a run with the PPP Kalman 
filter (red - zwd: random walk, 0.7 ps²/s; grd: random walk, 0.5 ps²/s; clk: deterministic rate 
plus random walk offset, 1 ps²/s). The error bars show 1 sigma of the bias, i.e. scatter/√25. For 
both methods the same input time series were used. The biases for North and East component 
are significantly smaller (almost zero) than the height biases. 
 
Since the scatter of the 3D rms error, i.e. the scatter of height, North, and East residuals, is 
mainly dependent on the variability of the troposphere, it is likely, that also the absolute value 
of the bias will be sensitive to the turbulence parameters. Figure 20 shows height biases for 
station WZ for schedule st16uni_60_12_230X_0_0.skd (using PPP Kalman filter). In this 
case, 250 repetitions were used and the turbulence parameters were varied. The plot on the 
right shows height biases versus effective height of wet troposphere for Cn values of 0.5e-7, 
2.0e-7 and 3.5e-7 m-1/3 and a wind of 7 m/s blowing towards North-East. The plot on the left 
shows the run with a Cn of 2.0e-7 m-1/3 but with error bars (scatter/√25) added. It can be seen 
that the height bias is becoming the larger the larger the turbulence parameters. The same 
holds for its sigma. For the generation of the time series of equivalent turbulent zenith wet 
delays, the same 250 sets of random numbers were used, the differences thus being only due 
to the turbulence parameters (clock and white noise time series were also the same for every 
run). Summing up it can be said that the bias is influenced by i) the sequence of random 
numbers, ii) the turbulence parameters, and iii) the analysis strategy (not shown here). The 
sign of the bias is determined by i) and iii) while the turbulence parameters act as scaling 
parameters. Since always 16 stations are considered, this non-zero height bias should not be a 
problem but it is necessary to keep it in mind when interpreting results. 
 

 
 
Figure 19: height biases in mm – 
blue: for a PPP with the classical least 
squares method (zwd: 6 min, 48 
mm/h; grd: 6 min, 2 mm/h; clk: 1h, 54 
mm/h), red: for a PPP with the 
Kalman filter (zwd: random walk, 0.7 
ps²/s: grd: random walk, 0.5 ps²/s; 
clock: deterministic rate plus random 
walk offest, 1 ps²/s). The error bars 
show scatter/√25. The same time 
series of simulated group delay 
observables were used. 

 
Finally, the investigations have shown that the observation density also has an impact on the 
choice of optimal parameters. Most of the simulations presented here were carried out for one 
and the same schedule. It has to be mentioned that the results might look slightly different 
when repeating the investigations for a schedule with a significantly different observation 
density. 
 
In conclusion it has to be said that the results presented here do not always allow clear 
conclusions. The results should be interpreted very carefully, taking all these limitations into 
account. The findings presented here have to be confirmed with VLBI analysis software 
packages such as OCCAM and Calc/Solve. And, of course, these are just simulation studies. 
Although we consider the simulations to be the most realistic up to date, and although 
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comparisons of simulations to CONT05 real data (Wresnik et al., 2008, MacMillan, 2008) 
show good agreement, the strategies, even if confirmed with OCCAM and Calc/Solve, will 
have to be applied to real data as soon as possible to assess their benefit for future VLBI 
analyses. 
 

Figure 20: height biases for station WZ versus effective height of wet troposphere using the PPP Kalman 
filter. Left plot: Cn = 2.0e-7 m-1/3, v = 7 m/s towards North-East, error bars show 1 sigma of the bias, i.e. 
scatter/√25; right plot: height biases for three different Cn values, v = 7 m/s towards North-East. Zwd: 
random walk, 0.7 ps²/s; gradients: random walk, 0.5 ps²/s; clk: deterministic rate plus random walk 
offset, 1 ps²/s. Schedule: st16uni_60_12_230X_0_0.skd; ASD 1e-14 @ 50 min; wn = 4/√2 ps. Always 
the same 250 sets of random numbers were used. 
 
 
5. Summary 
 
For both versions of the VLBI2010 PPP simulation software, the classical least squares 
version and the Kalman filter version, several parameters and strategies have been tested to 
assess their impact on position estimates. For the classical least squares method these were: 
 

– rapid gradients, 
– the impact of constraints, 
– the length of estimation intervals, and 
– elevation dependent weighting. 

 
For the Kalman filter 
 

– random walk gradients, 
– the impact of variance rates, and 
– elevation dependent weighting 

 
were investigated. 
 
It was found that the estimation of rapid gradients and random walk gradients respectively 
yields an improvement compared to the standard models (no gradients or slow gradients for 
the classical least squares, and no gradients or deterministic gradients for the Kalman filter). 
Another strategy that yielded promising improvement of 3D rms errors is elevation dependent 
weighting. It was shown that the impact of variance rates and constraints is either insignificant 
or at least pretty small. 
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The investigations have also shown that the optimal choice of parameters is mainly dependent 
on the prevailing atmospheric conditions and on the observation density making it impossible 
to come up with a general recommendation for a “best” parameterization. A good strategy for 
PPP solutions might be to use different parametrizations for dry and wet stations. Whether 
this might improve results of a network solution too, has to be tested. Nevertheless, it was 
shown that analyses strategies might have to be adapted to the new VLBI2010 schedules, 
mainly due to the increase in the number of observations, in order to gain the greatest benefit 
from this feature. 
 
 
Appendix: 
 
Most current set of turbulence parameters, provided by T. Nilsson from Onsala Space 
Observatory, used for the simulation studies presented here: 
 
# ST   Cn     H      vnor   veas   
#      [m-1/3]  [m]    [m/s]  [m/s] 
BA     0.83   2410   0.25   4.74    
BN     3.09   1788   3.46  -2.20    
FT     1.80   2459   2.93  -7.12    
GC     0.55   2079   3.80  -6.49    
HA     2.02   2450   2.03  -2.84    
HO     1.15   1804   3.03  11.14    
KE     0.93   2569   3.40  17.50    
KK     2.28   1477   4.38  -3.36    
KW     3.06   1477  -1.64  -9.42    
MS     1.90   1322   7.64   0.91    
NY     0.35   2173   7.46   0.53    
TA     2.66   2006   5.45  -1.17    
TC     1.40   1869   1.21   4.96    
TS     1.44   1767   1.03  10.49    
WS     1.16   2887   5.39  11.88    
WZ     0.93   2040   6.75   4.22 
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